SDV Guide
digital.auto
  • Welcome
  • SDV101
    • Part A: Essentials
      • Smart Phone? No: Habitat on Wheels!
      • Basics: What is a Software-defined Vehicle
      • MHP: Expert Opinion
      • Challenges: What sets automotive software development apart?
      • SDV Domains and Two-Speed Delivery
    • Part B: Lessons Learned
      • Learnings from the Internet Folks
        • Innovation Management
        • Cloud Native Principles
          • DevOps and Continuous Delivery
          • Loose Coupling
            • Microservices & APIs
            • Containerization
            • Building Robust and Resilient Systems
      • Learnings from the Smart Phone Folks
    • Part C: Building Blocks
      • Foundation: E/E Architecture
        • Today`s E/E Architectures
        • Evolving Trends in E/E Architectur
        • Case Study: Rivian
      • Standards for Software-Defined Vehicles and E/E Architectures
      • Building Blocks of an SDV
        • Service-Oriented Architecture
          • The SOA Framework for SDVs
          • Container Runtimes
          • Vehicle APIs
          • Example: Real-World Application of SDV Concepts
          • Ensuring Functional Safety
          • Event Chains in Vehicle SOAs
          • Vehicle SOA Tech Stack
        • Over-the-Air Updates: The Backbone of Software-Defined Vehicles
        • Vehicle App Store: The Holy Grail of Software-Defined Vehicles
      • Summary: Building Blocks for Software-Defined Vehicles
    • Part D: Implementation Strategies
      • #DigitalFirst
      • Hardware vs Software Engineering
        • The Traditional V-Model in Automotive Development
        • Agile V-Model, anybody?
        • Key: Loosely Coupled, Automated Development Pipelines
        • The SDV Software Factory
      • Implementing the Shift Left
        • Simulation and Digital Prototyping
          • Early Validation: Cloud-based SDV Prototyping
          • Detailed Validation: SDVs and Simulation
        • Towards the Virtual Vehicle
          • Case Study: Multi-Supplier Collaboration on Virtual Platform
          • Long-Term Vision
        • Physical test system
        • De-Coupled, Multi-Speed System Evolution
        • Continuous Homologation
        • Summary and Outlook
      • Enterprise Topics
        • Variant Management
        • Engineering Intelligence
        • Enterprise Organization, Processes, and Architecture
        • Incumbent OEMs vs EV Start-ups
  • SDV201
  • ./pulse
    • SDV Culture
    • Lean Sourcing
      • LeanRM
        • Why so many Requirements?
      • SCM for SDVs
    • SDV Systems Engineering
      • LeanSE
      • SDVxMBSE
    • Digital First
    • Loose Coupling
      • API-first
      • Freeze Points
    • Automation and Engineering Intelligence
    • Continuous Homologation
    • Build / Measure / Learn
  • Glossary
Powered by GitBook

SDV Guide

  • Legal Notice
  • Disclaimer
  • Privacy Policy

(c) 2025 Dirk Slama

On this page
  1. SDV101
  2. Part D: Implementation Strategies
  3. Enterprise Topics

Incumbent OEMs vs EV Start-ups

PreviousEnterprise Organization, Processes, and ArchitectureNextSDV201

Last updated 6 months ago

The SDV transformation highlights critical differences between incumbent OEMs and disruptors, as outlined in the table:

Incumbent OEMs, with their legacy systems and processes, focus on cost optimization and milestone-driven innovation. Their structures are often siloed, with slower, hierarchical decision-making. In contrast, disruptors embrace value-driven innovation, operate with cross-functional teams, and adopt agile, decentralized processes. Disruptors prioritize continuous feedback, shorter release cycles, and automated testing while unifying their CI/CD pipelines for consistency.

Closing: Learning from Disruptors

For incumbents to remain competitive in the SDV era, they must adopt key principles from disruptors, including agile decision-making, continuous feedback, and unified DevOps practices. At the same time, they must leverage their ability to scale globally and deliver products at the highest quality. Successfully merging these strengths will enable incumbents to innovate rapidly while maintaining the reliability and scale that have been their core competencies.