SDV Guide
digital.auto
  • Welcome
  • SDV101
    • Part A: Essentials
      • Smart Phone? No: Habitat on Wheels!
      • Basics: What is a Software-defined Vehicle
      • MHP: Expert Opinion
      • Challenges: What sets automotive software development apart?
      • SDV Domains and Two-Speed Delivery
    • Part B: Lessons Learned
      • Learnings from the Internet Folks
        • Innovation Management
        • Cloud Native Principles
          • DevOps and Continuous Delivery
          • Loose Coupling
            • Microservices & APIs
            • Containerization
            • Building Robust and Resilient Systems
      • Learnings from the Smart Phone Folks
    • Part C: Building Blocks
      • Foundation: E/E Architecture
        • Today`s E/E Architectures
        • Evolving Trends in E/E Architectur
        • Case Study: Rivian
      • Standards for Software-Defined Vehicles and E/E Architectures
      • Building Blocks of an SDV
        • Service-Oriented Architecture
          • The SOA Framework for SDVs
          • Container Runtimes
          • Vehicle APIs
          • Example: Real-World Application of SDV Concepts
          • Ensuring Functional Safety
          • Event Chains in Vehicle SOAs
          • Vehicle SOA Tech Stack
        • Over-the-Air Updates: The Backbone of Software-Defined Vehicles
        • Vehicle App Store: The Holy Grail of Software-Defined Vehicles
      • Summary: Building Blocks for Software-Defined Vehicles
    • Part D: Implementation Strategies
      • #DigitalFirst
      • Hardware vs Software Engineering
        • The Traditional V-Model in Automotive Development
        • Agile V-Model, anybody?
        • Key: Loosely Coupled, Automated Development Pipelines
        • The SDV Software Factory
      • Implementing the Shift Left
        • Simulation and Digital Prototyping
          • Early Validation: Cloud-based SDV Prototyping
          • Detailed Validation: SDVs and Simulation
        • Towards the Virtual Vehicle
          • Case Study: Multi-Supplier Collaboration on Virtual Platform
          • Long-Term Vision
        • Physical test system
        • De-Coupled, Multi-Speed System Evolution
        • Continuous Homologation
        • Summary and Outlook
      • Enterprise Topics
        • Variant Management
        • Engineering Intelligence
        • Enterprise Organization, Processes, and Architecture
        • Incumbent OEMs vs EV Start-ups
  • SDV201
  • ./pulse
    • SDV Culture
    • Lean Sourcing
      • LeanRM
        • Why so many Requirements?
      • SCM for SDVs
    • SDV Systems Engineering
      • LeanSE
      • SDVxMBSE
    • Digital First
    • Loose Coupling
      • API-first
      • Freeze Points
    • Automation and Engineering Intelligence
    • Continuous Homologation
    • Build / Measure / Learn
  • Glossary
Powered by GitBook

SDV Guide

  • Legal Notice
  • Disclaimer
  • Privacy Policy

(c) 2025 Dirk Slama

On this page
  1. SDV101
  2. Part D: Implementation Strategies

Hardware vs Software Engineering

Previous#DigitalFirstNextThe Traditional V-Model in Automotive Development

Last updated 6 months ago

In the world of software-defined vehicles (SDVs), the convergence of hardware and software engineering presents unique challenges and opportunities. Traditional hardware development has long been guided by the V-Model, a proven approach for managing the design, integration, and validation of mechanical and electrical/electronic (E/E) systems. However, as the automotive industry shifts towards more software-centric architectures, the need for agility and multi-speed development becomes essential.

While hardware workstreams often require long-term planning and stability, software engineering demands continuous iteration and rapid updates. This multi-speed approach requires decoupling hardware, E/E, and software development processes through clear technical interfaces like VHAL and organizational alignment. To fully realize this decoupling, automated CI/CD pipelines must be introduced and mapped effectively onto the V-Model, enabling seamless integration and validation across digital, E/E, and mechanical workstreams.

In this chapter, we explore how hardware and software engineering principles interact, the role of the V-Model in managing these complexities, and the ways CI/CD automation and agile methods can harmonize the different speeds of development.