SDV Guide
digital.auto
  • Welcome
  • SDV101
    • Part A: Essentials
      • Smart Phone? No: Habitat on Wheels!
      • Basics: What is a Software-defined Vehicle
      • MHP: Expert Opinion
      • Challenges: What sets automotive software development apart?
      • SDV Domains and Two-Speed Delivery
    • Part B: Lessons Learned
      • Learnings from the Internet Folks
        • Innovation Management
        • Cloud Native Principles
          • DevOps and Continuous Delivery
          • Loose Coupling
            • Microservices & APIs
            • Containerization
            • Building Robust and Resilient Systems
      • Learnings from the Smart Phone Folks
    • Part C: Building Blocks
      • Foundation: E/E Architecture
        • Today`s E/E Architectures
        • Evolving Trends in E/E Architectur
        • Case Study: Rivian
      • Standards for Software-Defined Vehicles and E/E Architectures
      • Building Blocks of an SDV
        • Service-Oriented Architecture
          • The SOA Framework for SDVs
          • Container Runtimes
          • Vehicle APIs
          • Example: Real-World Application of SDV Concepts
          • Ensuring Functional Safety
          • Event Chains in Vehicle SOAs
          • Vehicle SOA Tech Stack
        • Over-the-Air Updates: The Backbone of Software-Defined Vehicles
        • Vehicle App Store: The Holy Grail of Software-Defined Vehicles
      • Summary: Building Blocks for Software-Defined Vehicles
    • Part D: Implementation Strategies
      • #DigitalFirst
      • Hardware vs Software Engineering
        • The Traditional V-Model in Automotive Development
        • Agile V-Model, anybody?
        • Key: Loosely Coupled, Automated Development Pipelines
        • The SDV Software Factory
      • Implementing the Shift Left
        • Simulation and Digital Prototyping
          • Early Validation: Cloud-based SDV Prototyping
          • Detailed Validation: SDVs and Simulation
        • Towards the Virtual Vehicle
          • Case Study: Multi-Supplier Collaboration on Virtual Platform
          • Long-Term Vision
        • Physical test system
        • De-Coupled, Multi-Speed System Evolution
        • Continuous Homologation
        • Summary and Outlook
      • Enterprise Topics
        • Variant Management
        • Engineering Intelligence
        • Enterprise Organization, Processes, and Architecture
        • Incumbent OEMs vs EV Start-ups
  • SDV201
  • ./pulse
    • SDV Culture
    • Lean Sourcing
      • LeanRM
        • Why so many Requirements?
      • SCM for SDVs
    • SDV Systems Engineering
      • LeanSE
      • SDVxMBSE
    • Digital First
    • Loose Coupling
      • API-first
      • Freeze Points
    • Automation and Engineering Intelligence
    • Continuous Homologation
    • Build / Measure / Learn
  • Glossary
Powered by GitBook

SDV Guide

  • Legal Notice
  • Disclaimer
  • Privacy Policy

(c) 2025 Dirk Slama

On this page
  1. ./pulse

Lean Sourcing

In the multi-speed delivery model of ./pulse, where hardware and software evolve at different paces, traditional sourcing and requirements processes become bottlenecks.

Lean Sourcing enables modular, agile procurement by decoupling HW and SW, supporting just-in-time sourcing, and aligning supplier contracts with continuous integration cycles. This approach reduces dependencies, accelerates updates, and ensures supply chain resilience, making it essential for Software-Defined Vehicles (SDVs).

  • Lean Requirement Management (LeanRM) simplifies requirements management by focusing on value, reducing waste, and ensuring traceability at the speed of modern development. It replaces rigid, document-heavy processes with adaptive, iterative requirement flows that match the pace of SDV innovation.

  • Supply Chain Management for SDVs shifts from static, hardware-driven logistics to a modular, software-first ecosystem. It unbundles HW and SW and enables agile contracts with fewer fixed requirements, allowing for faster integration, reduced risk, and better alignment with over-the-air (OTA) updates.

Together, these approaches create an adaptive framework that enables SDVs to evolve continuously, efficiently, and at scale.

PreviousSDV CultureNextLeanRM

Last updated 4 months ago