SDV Guide
digital.auto
  • Welcome
  • SDV101
    • Part A: Essentials
      • Smart Phone? No: Habitat on Wheels!
      • Basics: What is a Software-defined Vehicle
      • MHP: Expert Opinion
      • Challenges: What sets automotive software development apart?
      • SDV Domains and Two-Speed Delivery
    • Part B: Lessons Learned
      • Learnings from the Internet Folks
        • Innovation Management
        • Cloud Native Principles
          • DevOps and Continuous Delivery
          • Loose Coupling
            • Microservices & APIs
            • Containerization
            • Building Robust and Resilient Systems
      • Learnings from the Smart Phone Folks
    • Part C: Building Blocks
      • Foundation: E/E Architecture
        • Today`s E/E Architectures
        • Evolving Trends in E/E Architectur
        • Case Study: Rivian
      • Standards for Software-Defined Vehicles and E/E Architectures
      • Building Blocks of an SDV
        • Service-Oriented Architecture
          • The SOA Framework for SDVs
          • Container Runtimes
          • Vehicle APIs
          • Example: Real-World Application of SDV Concepts
          • Ensuring Functional Safety
          • Event Chains in Vehicle SOAs
          • Vehicle SOA Tech Stack
        • Over-the-Air Updates: The Backbone of Software-Defined Vehicles
        • Vehicle App Store: The Holy Grail of Software-Defined Vehicles
      • Summary: Building Blocks for Software-Defined Vehicles
    • Part D: Implementation Strategies
      • #DigitalFirst
      • Hardware vs Software Engineering
        • The Traditional V-Model in Automotive Development
        • Agile V-Model, anybody?
        • Key: Loosely Coupled, Automated Development Pipelines
        • The SDV Software Factory
      • Implementing the Shift Left
        • Simulation and Digital Prototyping
          • Early Validation: Cloud-based SDV Prototyping
          • Detailed Validation: SDVs and Simulation
        • Towards the Virtual Vehicle
          • Case Study: Multi-Supplier Collaboration on Virtual Platform
          • Long-Term Vision
        • Physical test system
        • De-Coupled, Multi-Speed System Evolution
        • Continuous Homologation
        • Summary and Outlook
      • Enterprise Topics
        • Variant Management
        • Engineering Intelligence
        • Enterprise Organization, Processes, and Architecture
        • Incumbent OEMs vs EV Start-ups
  • SDV201
  • ./pulse
    • SDV Culture
    • Lean Sourcing
      • LeanRM
        • Why so many Requirements?
      • SCM for SDVs
    • SDV Systems Engineering
      • LeanSE
      • SDVxMBSE
    • Digital First
    • Loose Coupling
      • API-first
      • Freeze Points
    • Automation and Engineering Intelligence
    • Continuous Homologation
    • Build / Measure / Learn
  • Glossary
Powered by GitBook

SDV Guide

  • Legal Notice
  • Disclaimer
  • Privacy Policy

(c) 2025 Dirk Slama

On this page
  • The Power of Cloud-Native Principles
  • The Role of Open Source
  1. SDV101
  2. Part B: Lessons Learned
  3. Learnings from the Internet Folks

Cloud Native Principles

PreviousInnovation ManagementNextDevOps and Continuous Delivery

Last updated 6 months ago

Having explored innovation in the Internet, we now turn to cloud-native principles, the foundation for agile methods, DevOps, and continuous improvement.

The Power of Cloud-Native Principles

Cloud-native architecture emphasizes modularity and loose coupling, creating a foundation for scalability and resilience. These principles enable rapid deployment, testing, and iteration without disrupting production systems, fostering a more agile and responsive development process.

When combined with DevOps practices like automation and Continuous Delivery, supported by automated pipelines, cloud-native approaches allow teams to adapt quickly, reduce risk, and consistently deliver value to users.

The Role of Open Source

Open source is integral to the success of cloud-native principles. It provides a collaborative ecosystem where developers can build on shared tools, frameworks, and best practices. Open source not only accelerates innovation but also ensures transparency, security, and interoperability, making it a cornerstone of modern software development.

Let’s dive into how these principles power modern software development and drive the transformation of industries like automotive.